taps.apps.moldesign.chemfunctions¶
MorganFingerprintTransformer ¶
Bases: BaseEstimator
, TransformerMixin
Class that converts SMILES strings to fingerprint vectors.
Source code in taps/apps/moldesign/chemfunctions.py
fit() ¶
transform() ¶
Compute the fingerprints.
Parameters:
Returns:
-
Any
–Array of fingerprints.
Source code in taps/apps/moldesign/chemfunctions.py
generate_initial_xyz() ¶
Generate the XYZ coordinates for a molecule.
Parameters:
-
mol_string
(str
) –SMILES string.
Returns:
-
str
–XYZ coordinates for the molecule.
Source code in taps/apps/moldesign/chemfunctions.py
compute_vertical() ¶
Run the ionization potential computation.
Parameters:
-
smiles
(str
) –SMILES string to evaluate.
Returns:
-
float
–Ionization energy in Ha.
Source code in taps/apps/moldesign/chemfunctions.py
compute_morgan_fingerprints() ¶
compute_morgan_fingerprints(
smiles: str,
fingerprint_length: int,
fingerprint_radius: int,
) -> ndarray
Get Morgan Fingerprint of a specific SMILES string.
Parameters:
-
smiles
(str
) –The molecule as a SMILES string.
-
fingerprint_length
(int
) –Bit-length of fingerprint.
-
fingerprint_radius
(int
) –Radius used to compute fingerprint.
Returns:
-
ndarray
–Array with shape
[hparams, fingerprint_length]
of the Morgan fingerprint.
Source code in taps/apps/moldesign/chemfunctions.py
train_model() ¶
Train a machine learning model using Morgan Fingerprints.
Parameters:
-
smiles
(list[str]
) –SMILES strings for each molecule
-
properties
(list[float]
) –List of a property for each molecule
Returns:
-
Pipeline
–A trained model.
Source code in taps/apps/moldesign/chemfunctions.py
run_model() ¶
Run a model on a list of smiles strings.
Parameters:
-
model
(Any
) –Trained model that takes SMILES strings as inputs.
-
smiles
(list[str]
) –List of molecules to evaluate.
Returns:
-
DataFrame
–A dataframe with the molecules and their predicted outputs.