taps.apps.fedlearn.modules¶
CifarModule ¶
CifarModule(num_classes: int)
            Bases: Module
Cifar model.
Source: https://www.kaggle.com/code/shadabhussain/cifar-10-cnn-using-pytorch
Source code in taps/apps/fedlearn/modules.py
                  MnistModule ¶
            Bases: Module
Model for MNIST and FashionMNIST data.
Source code in taps/apps/fedlearn/modules.py
                  
                forward() ¶
create_model() ¶
create_model(data: DataChoices) -> Module
Create a model suitable for the dataset choice.
Note
The currently supported dataset options are MNIST, FashionMNIST,
CIFAR10, and CIFAR100.
Parameters:
- 
        
data(DataChoices) –Name of dataset that will be used for training (and testing).
 
Returns:
- 
            
Module–PyTorch model.
 
Raises:
- 
            
ValueError–If an unsupported value for
datais provided. 
Source code in taps/apps/fedlearn/modules.py
        load_data() ¶
load_data(
    data_name: DataChoices,
    root: Path,
    train: bool,
    download: bool = False,
) -> Dataset
Load dataset for training.
Parameters:
- 
        
data_name(DataChoices) –Dataset choice.
 - 
        
root(Path) –Root dataset directory.
 - 
        
train(bool) –Flag for if training.
 - 
        
download(bool, default:False) –Should the dataset be downloaded.
 
Returns:
- 
Dataset(Dataset) –description